Open Access
Extended-representation bisulfite sequencing of gene regulatory elements in multiplexed samples and single cells
Author(s) -
Sarah J. Shareef,
Samantha M. Bevill,
Ayush T. Raman,
Martin J. Aryee,
Peter van Galen,
Volker Hovestadt,
B Bernstein
Publication year - 2021
Publication title -
nature biotechnology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 15.358
H-Index - 445
eISSN - 1546-1696
pISSN - 1087-0156
DOI - 10.1038/s41587-021-00910-x
Subject(s) - dna methylation , bisulfite sequencing , bisulfite , biology , epigenetics , cpg site , enhancer , computational biology , multiplex , genetics , illumina methylation assay , methylation , dna sequencing , gene , gene expression
The biological roles of DNA methylation have been elucidated by profiling methods based on whole-genome or reduced-representation bisulfite sequencing, but these approaches do not efficiently survey the vast numbers of non-coding regulatory elements in mammalian genomes. Here we present an extended-representation bisulfite sequencing (XRBS) method for targeted profiling of DNA methylation. Our design strikes a balance between expanding coverage of regulatory elements and reproducibly enriching informative CpG dinucleotides in promoters, enhancers and CTCF binding sites. Barcoded DNA fragments are pooled before bisulfite conversion, allowing multiplex processing and technical consistency in low-input samples. Application of XRBS to single leukemia cells enabled us to evaluate genetic copy number variations and methylation variability across individual cells. Our analysis highlights heterochromatic H3K9me3 regions as having the highest cell-to-cell variability in their methylation, likely reflecting inherent epigenetic instability of these late-replicating regions, compounded by differences in cell cycle stages among sampled cells.