
Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2
Author(s) -
Robert R. Stickels,
Evan Murray,
Pawan Kumar,
Jilong Li,
Jamie L. Marshall,
Daniela Di Bella,
Paola Arlotta,
Evan Z. Macosko,
Fei Chen
Publication year - 2020
Publication title -
nature biotechnology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 15.358
H-Index - 445
eISSN - 1546-1696
pISSN - 1087-0156
DOI - 10.1038/s41587-020-0739-1
Subject(s) - transcriptome , computer science , computational biology , leverage (statistics) , rna , rna seq , biology , artificial intelligence , gene expression , gene , genetics
Measurement of the location of molecules in tissues is essential for understanding tissue formation and function. Previously, we developed Slide-seq, a technology that enables transcriptome-wide detection of RNAs with a spatial resolution of 10 μm. Here we report Slide-seqV2, which combines improvements in library generation, bead synthesis and array indexing to reach an RNA capture efficiency ~50% that of single-cell RNA-seq data (~10-fold greater than Slide-seq), approaching the detection efficiency of droplet-based single-cell RNA-seq techniques. First, we leverage the detection efficiency of Slide-seqV2 to identify dendritically localized mRNAs in neurons of the mouse hippocampus. Second, we integrate the spatial information of Slide-seqV2 data with single-cell trajectory analysis tools to characterize the spatiotemporal development of the mouse neocortex, identifying underlying genetic programs that were poorly sampled with Slide-seq. The combination of near-cellular resolution and high transcript detection efficiency makes Slide-seqV2 useful across many experimental contexts.