
Structural basis of the activation of a metabotropic GABA receptor
Author(s) -
Hamidreza Shaye,
Andrii Ishchenko,
Jordy Homing Lam,
Gye Won Han,
Xue Li,
Philippe Rondard,
JeanPhilippe Pin,
Vsevolod Katritch,
Cornelius Gati,
Vadim Cherezov
Publication year - 2020
Publication title -
nature
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 15.993
H-Index - 1226
eISSN - 1476-4687
pISSN - 0028-0836
DOI - 10.1038/s41586-020-2408-4
Subject(s) - transmembrane domain , allosteric regulation , gabab receptor , biophysics , chemistry , metabotropic glutamate receptor , metabotropic receptor , transmembrane protein , agonist , receptor , biology , biochemistry
Metabotropic γ-aminobutyric acid receptors (GABA B ) are involved in the modulation of synaptic responses in the central nervous system and have been implicated in neuropsychological conditions that range from addiction to psychosis 1 . GABA B belongs to class C of the G-protein-coupled receptors, and its functional entity comprises an obligate heterodimer that is composed of the GB1 and GB2 subunits 2 . Each subunit possesses an extracellular Venus flytrap domain, which is connected to a canonical seven-transmembrane domain. Here we present four cryo-electron microscopy structures of the human full-length GB1-GB2 heterodimer: one structure of its inactive apo state, two intermediate agonist-bound forms and an active form in which the heterodimer is bound to an agonist and a positive allosteric modulator. The structures reveal substantial differences, which shed light on the complex motions that underlie the unique activation mechanism of GABA B . Our results show that agonist binding leads to the closure of the Venus flytrap domain of GB1, triggering a series of transitions, first rearranging and bringing the two transmembrane domains into close contact along transmembrane helix 6 and ultimately inducing conformational rearrangements in the GB2 transmembrane domain via a lever-like mechanism to initiate downstream signalling. This active state is stabilized by a positive allosteric modulator binding at the transmembrane dimerization interface.