Open Access
Transplanting neural progenitor cells to restore connectivity after spinal cord injury
Author(s) -
Itzhak Fischer,
Jennifer N. Dulin,
Megan Lane
Publication year - 2020
Publication title -
nature reviews. neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 11.585
H-Index - 413
eISSN - 1471-0048
pISSN - 1471-003X
DOI - 10.1038/s41583-020-0314-2
Subject(s) - neuroscience , spinal cord injury , progenitor cell , spinal cord , transplantation , neural stem cell , medicine , stem cell , biology , surgery , microbiology and biotechnology
Spinal cord injury remains a scientific and therapeutic challenge with great cost to individuals and society. The goal of research in this field is to find a means of restoring lost function. Recently we have seen considerable progress in understanding the injury process and the capacity of CNS neurons to regenerate, as well as innovations in stem cell biology. This presents an opportunity to develop effective transplantation strategies to provide new neural cells to promote the formation of new neuronal networks and functional connectivity. Past and ongoing clinical studies have demonstrated the safety of cell therapy, and preclinical research has used models of spinal cord injury to better elucidate the underlying mechanisms through which donor cells interact with the host and thus increase long-term efficacy. While a variety of cell therapies have been explored, we focus here on the use of neural progenitor cells obtained or derived from different sources to promote connectivity in sensory, motor and autonomic systems.