
Optical coherence refraction tomography
Author(s) -
Kevin C. Zhou,
Ruobing Qian,
Simone Degan,
Sina Farsiu,
Joseph A. Izatt
Publication year - 2019
Publication title -
nature photonics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 13.674
H-Index - 331
eISSN - 1749-4893
pISSN - 1749-4885
DOI - 10.1038/s41566-019-0508-1
Subject(s) - optical coherence tomography , optics , refraction , tomography , image resolution , physics , speckle pattern , refractive index , coherence (philosophical gambling strategy) , materials science , quantum mechanics
Optical coherence tomography (OCT) is a cross-sectional, micron-scale imaging modality with widespread clinical application. Typical OCT systems sacrifice lateral resolution to achieve long depths of focus for bulk tissue imaging, and hence tend to have better axial than lateral resolution. Such anisotropic resolution can obscure fine ultrastructural features. Furthermore, conventional OCT suffers from refraction-induced image distortions. Here, we introduce optical coherence refraction tomography (OCRT), which extends the superior axial resolution to the lateral dimension, synthesising undistorted cross-sectional image reconstructions from multiple conventional images acquired with angular diversity. In correcting refraction-induced distortions to register the OCT images, OCRT also achieves spatially resolved refractive index imaging. We demonstrate >3-fold improvement in lateral resolution as well as speckle reduction in imaging tissue ultrastructure, consistent with histology. With further optimisation in optical designs to incorporate angular diversity into clinical instruments, OCRT could be widely applied as an enhancement over conventional OCT.