
Mosquito microevolution drives Plasmodium falciparum dynamics
Author(s) -
Markus Gildenhard,
Evans Kiplangat Rono,
Alkadri Diarra,
Anne Boissière,
Priscila Bascuñán,
Paola Carrillo-Bustamante,
Djènèba Camara,
Hanne Krüger,
Modibo Mariko,
Ramata Mariko,
Paul O. Mireji,
Sandrine E. Nsango,
Julien Pompon,
Y. T. Reis,
Martin K. Rono,
Pamela B. Seda,
Janis Thailayil,
A Traoré,
Cynthia V. Yapto,
Parfait Awono-Ambene,
Roch K. Dabiré,
A. Diabate,
Daniel Masiga,
Flaminia Catteruccia,
Isabelle Morlais,
Mouctar Diallo,
D Sangaré,
Elena A. Levashina
Publication year - 2019
Publication title -
nature microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.305
H-Index - 79
ISSN - 2058-5276
DOI - 10.1038/s41564-019-0414-9
Subject(s) - microevolution , malaria , biology , vector (molecular biology) , plasmodium (life cycle) , ecology , plasmodium falciparum , evolutionary ecology , population , anopheles , avian malaria , generalist and specialist species , evolutionary biology , genetics , host (biology) , gametocyte , parasite hosting , demography , immunology , habitat , sociology , world wide web , gene , computer science , recombinant dna
Malaria, a major cause of child mortality in Africa, is engendered by Plasmodium parasites that are transmitted by anopheline mosquitoes. Fitness of Plasmodium parasites is closely linked to the ecology and evolution of its anopheline vector. However, whether the genetic structure of vector populations impacts malaria transmission remains unknown. Here, we describe a partitioning of the African malaria vectors into generalists and specialists that evolve along ecological boundaries. We next identify the contribution of mosquito species to Plasmodium abundance using Granger causality tests for time-series data collected over two rainy seasons in Mali. We find that mosquito microevolution, defined by changes in the genetic structure of a population over short ecological timescales, drives Plasmodium dynamics in nature, whereas vector abundance, infection prevalence, temperature and rain have low predictive values. Our study demonstrates the power of time-series approaches in vector biology and highlights the importance of focusing local vector control strategies on mosquito species that drive malaria dynamics.