z-logo
open-access-imgOpen Access
Enhancer selection dictates gene expression responses in remote organs during tissue regeneration
Author(s) -
Fei Sun,
Jianhong Ou,
Adam R. Shoffner,
Yu Luan,
Hongbo Yang,
Lingyun Song,
Alexias Safi,
Jingli Cao,
Feng Yue,
Gregory E. Crawford,
Kenneth D. Poss
Publication year - 2022
Publication title -
nature cell biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 11.38
H-Index - 369
eISSN - 1476-4679
pISSN - 1465-7392
DOI - 10.1038/s41556-022-00906-y
Subject(s) - enhancer , regeneration (biology) , microbiology and biotechnology , biology , gene expression , selection (genetic algorithm) , gene , regulation of gene expression , genetics , computer science , artificial intelligence
Acute trauma stimulates local repair mechanisms but can also impact structures distant from the injury, for example through the activity of circulating factors. To study the responses of remote tissues during tissue regeneration, we profiled transcriptomes of zebrafish brains after experimental cardiac damage. We found that the transcription factor gene cebpd was upregulated remotely in brain ependymal cells as well as kidney tubular cells, in addition to its local induction in epicardial cells. cebpd mutations altered both local and distant cardiac injury responses, altering the cycling of epicardial cells as well as exchange between distant fluid compartments. Genome-wide profiling and transgenesis identified a hormone-responsive enhancer near cebpd that exists in a permissive state, enabling rapid gene expression in heart, brain and kidney after cardiac injury. Deletion of this sequence selectively abolished cebpd induction in remote tissues and disrupted fluid regulation after injury, without affecting its local cardiac expression response. Our findings suggest a model to broaden gene function during regeneration in which enhancer regulatory elements define short- and long-range expression responses to injury.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here