
A perinuclear microtubule-organizing centre controls nuclear positioning and basement membrane secretion
Author(s) -
Yiming Zheng,
Rebecca A Buchwalter,
Chunfeng Zheng,
Elise M. Wight,
Jieyan V. Chen,
Timothy L. Megraw
Publication year - 2020
Publication title -
nature cell biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 11.38
H-Index - 369
eISSN - 1476-4679
pISSN - 1465-7392
DOI - 10.1038/s41556-020-0470-7
Subject(s) - microtubule , microbiology and biotechnology , microtubule organizing center , centrosome , endosome , biology , microtubule nucleation , microtubule associated protein , cytoplasm , secretion , dynein , tubulin , cell , biochemistry , intracellular , cell cycle
Non-centrosomal microtubule-organizing centres (ncMTOCs) have a variety of roles that are presumed to serve the diverse functions of the range of cell types in which they are found. ncMTOCs are diverse in their composition, subcellular localization and function. Here we report a perinuclear MTOC in Drosophila fat body cells that is anchored by the Nesprin homologue Msp300 at the cytoplasmic surface of the nucleus. Msp300 recruits the microtubule minus-end protein Patronin, a calmodulin-regulated spectrin-associated protein (CAMSAP) homologue, which functions redundantly with Ninein to further recruit the microtubule polymerase Msps-a member of the XMAP215 family-to assemble non-centrosomal microtubules and does so independently of the widespread microtubule nucleation factor γ-Tubulin. Functionally, the fat body ncMTOC and the radial microtubule arrays that it organizes are essential for nuclear positioning and for secretion of basement membrane components via retrograde dynein-dependent endosomal trafficking that restricts plasma membrane growth. Together, this study identifies a perinuclear ncMTOC with unique architecture that regulates microtubules, serving vital functions.