z-logo
open-access-imgOpen Access
Strong light-matter coupling for reduced photon energy losses in organic photovoltaics
Author(s) -
Vasileios C. Nikolis,
Andreas Mischok,
Bernhard Siegmund,
Jonas Kublitski,
Xiangkun Jia,
Johannes Benduhn,
Ulrich Hörmann,
Dieter Neher,
Malte C. Gather,
Donato Spoltore,
Koen Vandewal
Publication year - 2019
Publication title -
nature communications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.559
H-Index - 365
ISSN - 2041-1723
DOI - 10.1038/s41467-019-11717-5
Subject(s) - optoelectronics , organic solar cell , polariton , coupling (piping) , exciton , active layer , absorption (acoustics) , materials science , band gap , acceptor , organic semiconductor , semiconductor , photon , physics , layer (electronics) , nanotechnology , optics , condensed matter physics , polymer , thin film transistor , metallurgy , composite material
Strong light-matter coupling can re-arrange the exciton energies in organic semiconductors. Here, we exploit strong coupling by embedding a fullerene-free organic solar cell (OSC) photo-active layer into an optical microcavity, leading to the formation of polariton peaks and a red-shift of the optical gap. At the same time, the open-circuit voltage of the device remains unaffected. This leads to reduced photon energy losses for the low-energy polaritons and a steepening of the absorption edge. While strong coupling reduces the optical gap, the energy of the charge-transfer state is not affected for large driving force donor-acceptor systems. Interestingly, this implies that strong coupling can be exploited in OSCs to reduce the driving force for electron transfer, without chemical or microstructural modifications of the photo-active layer. Our work demonstrates that the processes determining voltage losses in OSCs can now be tuned, and reduced to unprecedented values, simply by manipulating the device architecture.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here