z-logo
open-access-imgOpen Access
miR-27a inhibits cervical adenocarcinoma progression by downregulating the TGF-βRI signaling pathway
Author(s) -
Fang Fang,
Bangxing Huang,
Si Sun,
Man Xiao,
Jing Guo,
Xiaoqing Yi,
Jing Cai,
Zehua Wang
Publication year - 2018
Publication title -
cell death and disease
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.482
H-Index - 111
ISSN - 2041-4889
DOI - 10.1038/s41419-018-0431-2
Subject(s) - cancer research , transforming growth factor , stromal cell , cell growth , hela , adenocarcinoma , signal transduction , transfection , metastasis , biology , chemistry , cell , cell culture , cancer , microbiology and biotechnology , genetics
High-risk human papillomavirus infection is essential for the malignant transformation of cervical cancer and can inhibit host miR-27a expression. We investigated the role and mechanism of miR-27a in cervical cancer progression. miR-27a is decreased in cervical cancer cell lines and miR-27a-agomir inhibited the cell proliferation, migration, and invasion properties of HeLa (adenocarcinoma) cells, but not in SiHa cells (squamous cell carcinoma). Luciferase assays revealed that miR-27a directly targets the 3′-UTR of transforming growth factor beta receptor I (TGF-βRI) and downregulates TGF-β signaling. The co-transfection of a TGF-βRI expression vector largely restored the inhibition of TGF-β signaling, cell proliferation, migration, and invasion mediated by miR-27a-agomir. Also, miR-27a-agomir slows down the growth of subcutaneous HeLa xenografts and downregulates the TGF-βRI expression and TGF-β signaling in tumor in vivo. Tissue microarray analysis revealed a low miR-27a level in adenocarcinoma cells, but not in squamous cell carcinoma cells, which was negatively associated with TGF-βRI expression. High TGF-βRI correlated with deep stromal invasion and lymph node metastasis. These results suggest that miR-27a acts as a tumor suppressor in cervical cancer, especially in adenocarcinoma, by inhibiting TGF-βRI signaling pathway. Thus, enhancing miR-27a expression and function may be a novel treatment strategy for cervical adenocarcinoma.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here