
miR-27a inhibits cervical adenocarcinoma progression by downregulating the TGF-βRI signaling pathway
Author(s) -
Fang Fang,
Bangxing Huang,
Si Sun,
Man Xiao,
Jing Guo,
Xiaoqing Yi,
Jing Cai,
Zehua Wang
Publication year - 2018
Publication title -
cell death and disease
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.482
H-Index - 111
ISSN - 2041-4889
DOI - 10.1038/s41419-018-0431-2
Subject(s) - cancer research , transforming growth factor , stromal cell , cell growth , hela , adenocarcinoma , signal transduction , transfection , metastasis , biology , chemistry , cell , cell culture , cancer , microbiology and biotechnology , genetics
High-risk human papillomavirus infection is essential for the malignant transformation of cervical cancer and can inhibit host miR-27a expression. We investigated the role and mechanism of miR-27a in cervical cancer progression. miR-27a is decreased in cervical cancer cell lines and miR-27a-agomir inhibited the cell proliferation, migration, and invasion properties of HeLa (adenocarcinoma) cells, but not in SiHa cells (squamous cell carcinoma). Luciferase assays revealed that miR-27a directly targets the 3′-UTR of transforming growth factor beta receptor I (TGF-βRI) and downregulates TGF-β signaling. The co-transfection of a TGF-βRI expression vector largely restored the inhibition of TGF-β signaling, cell proliferation, migration, and invasion mediated by miR-27a-agomir. Also, miR-27a-agomir slows down the growth of subcutaneous HeLa xenografts and downregulates the TGF-βRI expression and TGF-β signaling in tumor in vivo. Tissue microarray analysis revealed a low miR-27a level in adenocarcinoma cells, but not in squamous cell carcinoma cells, which was negatively associated with TGF-βRI expression. High TGF-βRI correlated with deep stromal invasion and lymph node metastasis. These results suggest that miR-27a acts as a tumor suppressor in cervical cancer, especially in adenocarcinoma, by inhibiting TGF-βRI signaling pathway. Thus, enhancing miR-27a expression and function may be a novel treatment strategy for cervical adenocarcinoma.