Water desalination using nanoporous single-layer graphene
Author(s) -
Sumedh P. Surwade,
Sergei Smirnov,
Ivan Vlassiouk,
Raymond R. Unocic,
Gabriel M. Veith,
Sheng Dai,
Shan M. Mahurin
Publication year - 2015
Publication title -
nature nanotechnology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 14.308
H-Index - 353
eISSN - 1748-3395
pISSN - 1748-3387
DOI - 10.1038/nnano.2015.37
Subject(s) - graphene , membrane , desalination , materials science , nanoporous , filtration (mathematics) , chemical engineering , monolayer , nanotechnology , water transport , water flow , chemistry , environmental science , environmental engineering , biochemistry , statistics , mathematics , engineering
By creating nanoscale pores in a layer of graphene, it could be used as an effective separation membrane due to its chemical and mechanical stability, its flexibility and, most importantly, its one-atom thickness. Theoretical studies have indicated that the performance of such membranes should be superior to state-of-the-art polymer-based filtration membranes, and experimental studies have recently begun to explore their potential. Here, we show that single-layer porous graphene can be used as a desalination membrane. Nanometre-sized pores are created in a graphene monolayer using an oxygen plasma etching process, which allows the size of the pores to be tuned. The resulting membranes exhibit a salt rejection rate of nearly 100% and rapid water transport. In particular, water fluxes of up to 10(6) g m(-2) s(-1) at 40 °C were measured using pressure difference as a driving force, while water fluxes measured using osmotic pressure as a driving force did not exceed 70 g m(-2) s(-1) atm(-1).
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom