Optical gain in colloidal quantum dots achieved with direct-current electrical pumping
Author(s) -
Jaehoon Lim,
YoungShin Park,
Victor I. Klimov
Publication year - 2017
Publication title -
nature materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 14.344
H-Index - 483
eISSN - 1476-4660
pISSN - 1476-1122
DOI - 10.1038/nmat5011
Subject(s) - lasing threshold , population inversion , optoelectronics , materials science , quantum dot , auger effect , electroluminescence , diode , laser , population , quantum dot laser , auger , semiconductor , direct current , semiconductor laser theory , nanotechnology , wavelength , optics , physics , voltage , atomic physics , demography , layer (electronics) , quantum mechanics , sociology
Chemically synthesized semiconductor quantum dots (QDs) can potentially enable solution-processable laser diodes with a wide range of operational wavelengths, yet demonstrations of lasing from the QDs are still at the laboratory stage. An important challenge-realization of lasing with electrical injection-remains unresolved, largely due to fast nonradiative Auger recombination of multicarrier states that represent gain-active species in the QDs. Here we present population inversion and optical gain in colloidal nanocrystals realized with direct-current electrical pumping. Using continuously graded QDs, we achieve a considerable suppression of Auger decay such that it can be outpaced by electrical injection. Further, we apply a special current-focusing device architecture, which allows us to produce high current densities (j) up to ∼18 A cm -2 without damaging either the QDs or the injection layers. The quantitative analysis of electroluminescence and current-modulated transmission spectra indicates that with j = 3-4 A cm -2 we achieve the population inversion of the band-edge states.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom