z-logo
open-access-imgOpen Access
Anisotropic mechanical amorphization drives wear in diamond
Author(s) -
Lars Pastewka,
Stefan Moser,
Peter Gumbsch,
Michael Moseler
Publication year - 2010
Publication title -
nature materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 14.344
H-Index - 483
eISSN - 1476-4660
pISSN - 1476-1122
DOI - 10.1038/nmat2902
Subject(s) - diamond , materials science , amorphous solid , anisotropy , polishing , chemical mechanical planarization , crystallite , material properties of diamond , crystal (programming language) , composite material , nanotechnology , diamond tool , crystallography , metallurgy , diamond turning , optics , chemistry , programming language , physics , computer science
Diamond is the hardest material on Earth. Nevertheless, polishing diamond is possible with a process that has remained unaltered for centuries and is still used for jewellery and coatings: the diamond is pressed against a rotating disc with embedded diamond grit. When polishing polycrystalline diamond, surface topographies become non-uniform because wear rates depend on crystal orientations. This anisotropy is not fully understood and impedes diamond's widespread use in applications that require planar polycrystalline films, ranging from cutting tools to confinement fusion. Here, we use molecular dynamics to show that polished diamond undergoes an sp(3)-sp(2) order-disorder transition resulting in an amorphous adlayer with a growth rate that strongly depends on surface orientation and sliding direction, in excellent correlation with experimental wear rates. This anisotropy originates in mechanically steered dissociation of individual crystal bonds. Similarly to other planarization processes, the diamond surface is chemically activated by mechanical means. Final removal of the amorphous interlayer proceeds either mechanically or through etching by ambient oxygen.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom