Phosphorylation of FOXP3 controls regulatory T cell function and is inhibited by TNF-α in rheumatoid arthritis
Author(s) -
Hong Nie,
Yingxia Zheng,
Li R,
Taylor B. Guo,
Dongyi He,
Lei Fang,
Xuebin Liu,
Lianbo Xiao,
Xi Chen,
Bing Wan,
Y. Eugene Chin,
Jingwu Z. Zhang
Publication year - 2013
Publication title -
nature medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 19.536
H-Index - 547
eISSN - 1546-170X
pISSN - 1078-8956
DOI - 10.1038/nm.3085
Subject(s) - foxp3 , rheumatoid arthritis , tumor necrosis factor alpha , immunology , medicine , arthritis , regulatory t cell , interleukin 17 , phosphorylation , t cell , cancer research , cytokine , biology , immune system , il 2 receptor , microbiology and biotechnology
Regulatory T (Treg) cells suppress autoimmune disease, and impaired Treg cell function is associated with rheumatoid arthritis. Here we demonstrate that forkhead box P3 (FOXP3) transcriptional activity and, consequently, Treg cell suppressive function are regulated by phosphorylation at Ser418 in the C-terminal DNA-binding domain. In rheumatoid arthritis-derived Treg cells, the Ser418 site was specifically dephosphorylated by protein phosphatase 1 (PP1), whose expression and enzymatic activity were induced in the inflamed synovium by tumor necrosis factor α (TNF-α), leading to impaired Treg cell function. Moreover, TNF-α-induced Treg cell dysfunction correlated with increased numbers of interleukin-17 (IL-17)(+) and interferon-γ (IFN-γ)(+)CD4(+) T cells within the inflamed synovium in rheumatoid arthritis. Treatment with a TNF-α-specific antibody restored Treg cell function in subjects with rheumatoid arthritis, which was associated with decreased PP1 expression and increased FOXP3 phosphorylation in Treg cells. Thus, TNF-α controls the balance between Treg cells and pathogenic TH17 and TH1 cells in the synovium of individuals with rheumatoid arthritis through FOXP3 dephosphorylation.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom