miR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1
Author(s) -
Wang Jx,
Jian Jiao,
Qian Li,
Bo Long,
Kun Wang,
Jin Ping Liu,
Yan Rui Li,
Peifeng Li
Publication year - 2010
Publication title -
nature medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 19.536
H-Index - 547
eISSN - 1546-170X
pISSN - 1078-8956
DOI - 10.1038/nm.2282
Subject(s) - calcineurin , dnm1l , dephosphorylation , mitochondrial fission , mitochondrion , microbiology and biotechnology , apoptosis , myocardial infarction , microrna , medicine , chemistry , cancer research , biology , phosphorylation , phosphatase , biochemistry , gene , transplantation
Myocardial infarction is a leading cause of mortality worldwide. Here we report that modulation of microRNA-499 (miR-499) levels affects apoptosis and the severity of myocardial infarction and cardiac dysfunction induced by ischemia-reperfusion. We found that both the α- and β-isoforms of the calcineurin catalytic subunit are direct targets of miR-499 and that miR-499 inhibits cardiomyocyte apoptosis through its suppression of calcineurin-mediated dephosphorylation of dynamin-related protein-1 (Drp1), thereby decreasing Drp1 accumulation in mitochondria and Drp1-mediated activation of the mitochondrial fission program. We also found that p53 transcriptionally downregulates miR-499 expression. Our data reveal a role for miR-499 in regulating the mitochondrial fission machinery and we suggest that modulation of miR-499 levels may provide a therapeutic approach for treating myocardial infarction.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom