A new role of substance P as an injury-inducible messenger for mobilization of CD29+ stromal-like cells
Author(s) -
Hoon Pyo Hong,
Jung Sun Lee,
EunAh Lee,
Young Sam Kwon,
Eunkyung Lee,
Woosung Ahn,
Mei Jiang,
Jae Chan Kim,
Youngsook Son
Publication year - 2009
Publication title -
nature medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 19.536
H-Index - 547
eISSN - 1546-170X
pISSN - 1078-8956
DOI - 10.1038/nm.1909
Subject(s) - stromal cell , wound healing , bone marrow , medicine , population , connective tissue , microbiology and biotechnology , cancer research , immunology , chemistry , pathology , biology , environmental health
Tissue injury may create a specific microenvironment for inducing the systemic participation of stromal-like cells in the repair process. Here we show that substance P is an injury-inducible factor that acts early in the wound healing process to induce CD29(+) stromal-like cell mobilization. Likewise, mobilization of such cells also occurs in uninjured mice, rats and rabbits if substance P is intravenously injected. Upon further characterization these substance P-mobilized CD29(+) cells were found to be similar to stromal cells from a number of connective tissues, including bone marrow (that is, bone marrow stromal cells, or BMSCs). Both substance P injection and transfusion of autologously derived substance P-mobilized CD29(+) cells from uninjured rabbits accelerated wound healing in an alkali burn model. Also, epithelial engraftment of the transfused cells into the injured tissue occurred during the wound healing. Finally, using human BMSCs as a test population, we show that substance P stimulates transmigration, cell proliferation, activation of the extracellular signal-related kinases (Erk) 1 and 2 and nuclear translocation of beta-catenin in vitro. This finding highlights a previously undescribed function of substance P as a systemically acting messenger of injury and a mobilizer of CD29(+) stromal-like cells to participate in wound healing.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom