A new type of ERK1/2 autophosphorylation causes cardiac hypertrophy
Author(s) -
Kristina Lorenz,
Joachim P. Schmitt,
Eva Schmitteckert,
Martin J. Lohse
Publication year - 2008
Publication title -
nature medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 19.536
H-Index - 547
eISSN - 1546-170X
pISSN - 1078-8956
DOI - 10.1038/nm.1893
Subject(s) - autophosphorylation , phosphorylation , microbiology and biotechnology , kinase , mapk/erk pathway , protein kinase a , mitogen activated protein kinase 3 , muscle hypertrophy , mitogen activated protein kinase , biology , phosphorylation cascade , protein phosphorylation , endocrinology
The extracellular-regulated kinases ERK1 and ERK2 (commonly referred to as ERK1/2) have a crucial role in cardiac hypertrophy. ERK1/2 is activated by mitogen-activated protein kinase kinase-1 (MEK1) and MEK2 (commonly referred to as MEK1/2)-dependent phosphorylation in the TEY motif of the activation loop, but how ERK1/2 is targeted toward specific substrates is not well understood. Here we show that autophosphorylation of ERK1/2 on Thr188 directs ERK1/2 to phosphorylate nuclear targets known to cause cardiac hypertrophy. Thr188 autophosphorylation requires the activation and assembly of the entire Raf-MEK-ERK kinase cascade, phosphorylation of the TEY motif, dimerization of ERK1/2 and binding to G protein betagamma subunits released from activated G(q). Thr188 phosphorylation of ERK1/2 was observed in isolated cardiomyocytes induced to undergo hypertrophic growth, in mice upon stimulation of G(q)-coupled receptors or after aortic banding and in failing human hearts. Experiments using transgenic mouse models carrying mutations at the Thr188 phosphorylation site of ERK2 suggested a causal relationship to cardiac hypertrophy. We propose that specific phosphorylation events on ERK1/2 integrate differing upstream signals (Raf1-MEK1/2 or G protein-coupled receptor-G(q)) to induce cardiac hypertrophy.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom