z-logo
open-access-imgOpen Access
Enzyme I facilitates reverse flux from pyruvate to phosphoenolpyruvate in Escherichia coli
Author(s) -
Christopher P. Long,
Jennifer Au,
Nicholas R. Sandoval,
Nikodimos A. Gebreselassie,
Maciek R. Antoniewicz
Publication year - 2017
Publication title -
nature communications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.559
H-Index - 365
ISSN - 2041-1723
DOI - 10.1038/ncomms14316
Subject(s) - phosphoenolpyruvate carboxykinase , escherichia coli , flux (metallurgy) , enzyme , chemistry , escherichia coli proteins , biochemistry , biology , gene , organic chemistry
The bacterial phosphoenolpyruvate-carbohydrate phosphotransferase system (PTS) consists of cascading phosphotransferases that couple the simultaneous import and phosphorylation of a variety of sugars to the glycolytic conversion of phosphoenolpyruvate (PEP) to pyruvate. As the primary route of glucose uptake in E. coli, the PTS plays a key role in regulating central carbon metabolism and carbon catabolite repression, and is a frequent target of metabolic engineering interventions. Here we show that Enzyme I, the terminal phosphotransferase responsible for the conversion of PEP to pyruvate, is responsible for a significant in vivo flux in the reverse direction (pyruvate to PEP) during both gluconeogenic and glycolytic growth. We use 13 C alanine tracers to quantify this back-flux in single and double knockouts of genes relating to PEP synthetase and PTS components. Our findings are relevant to metabolic engineering design and add to our understanding of gene-reaction connectivity in E. coli .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom