Open Access
Simple phosphinate ligands access zinc clusters identified in the synthesis of zinc oxide nanoparticles
Author(s) -
Sebastian D. Pike,
Edward M. White,
Milo S. P. Shaffer,
Charlotte K. Williams
Publication year - 2016
Publication title -
nature communications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.559
H-Index - 365
ISSN - 2041-1723
DOI - 10.1038/ncomms13008
Subject(s) - phosphinate , zinc , nanoparticle , ligand (biochemistry) , nucleation , cluster (spacecraft) , chemistry , combinatorial chemistry , nanotechnology , materials science , organic chemistry , receptor , biochemistry , fire retardant , computer science , programming language
The bottom-up synthesis of ligand-stabilized functional nanoparticles from molecular precursors is widely applied but is difficult to study mechanistically. Here we use 31 P NMR spectroscopy to follow the trajectory of phosphinate ligands during the synthesis of a range of ligated zinc oxo clusters, containing 4, 6 and 11 zinc atoms. Using an organometallic route, the clusters interconvert rapidly and self-assemble in solution based on thermodynamic equilibria rather than nucleation kinetics. These clusters are also identified in situ during the synthesis of phosphinate-capped zinc oxide nanoparticles. Unexpectedly, the ligand is sequestered to a stable Zn 11 cluster during the majority of the synthesis and only becomes coordinated to the nanoparticle surface, in the final step. In addition to a versatile and accessible route to (optionally doped) zinc clusters, the findings provide an understanding of the role of well-defined molecular precursors during the synthesis of small (2–4 nm) nanoparticles.