z-logo
open-access-imgOpen Access
Enhancing electric-field control of ferromagnetism through nanoscale engineering of high-Tc MnxGe1−x nanomesh
Author(s) -
Tianxiao Nie,
Jianshi Tang,
Xufeng Kou,
Gen Yin,
Shengwei Lee,
Xiaodan Zhu,
Li Te Chang,
Koichi Murata,
Yabin Fan,
Kang L. Wang
Publication year - 2016
Publication title -
nature communications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.559
H-Index - 365
ISSN - 2041-1723
DOI - 10.1038/ncomms12866
Subject(s) - spintronics , ferromagnetism , magnetoresistance , materials science , condensed matter physics , curie temperature , giant magnetoresistance , electric field , magnetism , magnetization , magnetic semiconductor , nanomesh , nanotechnology , colossal magnetoresistance , magnetic field , physics , graphene , quantum mechanics
Voltage control of magnetism in ferromagnetic semiconductor has emerged as an appealing solution to significantly reduce the power dissipation and variability beyond current CMOS technology. However, it has been proven to be very challenging to achieve a candidate with high Curie temperature ( T c ), controllable ferromagnetism and easy integration with current Si technology. Here we report the effective electric-field control of both ferromagnetism and magnetoresistance in unique Mn x Ge 1− x nanomeshes fabricated by nanosphere lithography, in which a T c above 400 K is demonstrated as a result of size/quantum confinement. Furthermore, by adjusting Mn doping concentration, extremely giant magnetoresistance is realized from ∼8,000% at 30 K to 75% at 300 K at 4 T, which arises from a geometrically enhanced magnetoresistance effect of the unique mesh structure. Our results may provide a paradigm for fundamentally understanding the high T c in ferromagnetic semiconductor nanostructure and realizing electric-field control of magnetoresistance for future spintronic applications.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here