z-logo
open-access-imgOpen Access
Lanosterol reverses protein aggregation in cataracts
Author(s) -
Ling Zhao,
Xiangjun Chen,
Jie Zhu,
Yi-Bo Xi,
Yu Xu,
Lidan Hu,
Hong Ouyang,
Sheila V. Patel,
Xin Jin,
Danni Lin,
Frances Wu,
Ken Flagg,
Huimin Cai,
Gen Li,
Guiqun Cao,
Ying Lin,
Daniel Chen,
Cindy Wen,
Christopher Chung,
Yandong Wang,
Austin Qiu,
Erika Yeh,
Wenqiu Wang,
Xun Hu,
Seanna Grob,
Ruben Abagyan,
Zhiguang Su,
Harry C. Tjondro,
Xiaoyan Zhao,
Hongrong Luo,
Rui Hou,
John R. Jefferson,
Philip J. Perry,
Weiwei Gao,
Igor Kozák,
David B. Granet,
Yingrui Li,
Xiaodong Sun,
Jun Wang,
Liangfang Zhang,
Yizhi Liu,
YongBin Yan,
Kang Zhang
Publication year - 2015
Publication title -
nature
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 15.993
H-Index - 1226
eISSN - 1476-4687
pISSN - 0028-0836
DOI - 10.1038/nature14650
Subject(s) - lanosterol , cataracts , crystallin , mutant , chemistry , protein aggregation , in vitro , biochemistry , microbiology and biotechnology , protein biosynthesis , biology , cholesterol , genetics , sterol , gene
The human lens is comprised largely of crystallin proteins assembled into a highly ordered, interactive macro-structure essential for lens transparency and refractive index. Any disruption of intra- or inter-protein interactions will alter this delicate structure, exposing hydrophobic surfaces, with consequent protein aggregation and cataract formation. Cataracts are the most common cause of blindness worldwide, affecting tens of millions of people, and currently the only treatment is surgical removal of cataractous lenses. The precise mechanisms by which lens proteins both prevent aggregation and maintain lens transparency are largely unknown. Lanosterol is an amphipathic molecule enriched in the lens. It is synthesized by lanosterol synthase (LSS) in a key cyclization reaction of a cholesterol synthesis pathway. Here we identify two distinct homozygous LSS missense mutations (W581R and G588S) in two families with extensive congenital cataracts. Both of these mutations affect highly conserved amino acid residues and impair key catalytic functions of LSS. Engineered expression of wild-type, but not mutant, LSS prevents intracellular protein aggregation of various cataract-causing mutant crystallins. Treatment by lanosterol, but not cholesterol, significantly decreased preformed protein aggregates both in vitro and in cell-transfection experiments. We further show that lanosterol treatment could reduce cataract severity and increase transparency in dissected rabbit cataractous lenses in vitro and cataract severity in vivo in dogs. Our study identifies lanosterol as a key molecule in the prevention of lens protein aggregation and points to a novel strategy for cataract prevention and treatment.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom