Crystal structures of a polypeptide processing and secretion transporter
Author(s) -
David Yin-wei Lin,
Shuo Huang,
Jue Chen
Publication year - 2015
Publication title -
nature
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 15.993
H-Index - 1226
eISSN - 1476-4687
pISSN - 0028-0836
DOI - 10.1038/nature14623
Subject(s) - secretion , transmembrane protein , atp binding cassette transporter , biochemistry , proteases , transport protein , microbiology and biotechnology , biology , signal peptide , chemistry , transporter , peptide sequence , enzyme , receptor , gene
Bacteria secrete peptides and proteins to communicate, to poison competitors, and to manipulate host cells. Among the various protein-translocation machineries, the peptidase-containing ATP-binding cassette transporters (PCATs) are appealingly simple. Each PCAT contains two peptidase domains that cleave the secretion signal from the substrate, two transmembrane domains that form a translocation pathway, and two nucleotide-binding domains that hydrolyse ATP. In Gram-positive bacteria, PCATs function both as maturation proteases and exporters for quorum-sensing or antimicrobial polypeptides. In Gram-negative bacteria, PCATs interact with two other membrane proteins to form the type 1 secretion system. Here we present crystal structures of PCAT1 from Clostridium thermocellum in two different conformations. These structures, accompanied by biochemical data, show that the translocation pathway is a large α-helical barrel sufficient to accommodate small folded proteins. ATP binding alternates access to the transmembrane pathway and also regulates the protease activity, thereby coupling substrate processing to translocation.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom