Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts
Author(s) -
Feng Yang,
Xiao Wang,
Daqi Zhang,
Juan Yang,
Da Luo,
Ziwei Xu,
Jiake Wei,
Jianqiang Wang,
Zhiheng Li,
Peng Fei,
Xuemei Li,
Ruoming Li,
Yilun Li,
Meihui Li,
Xuedong Bai,
Feng Ding,
Yan Li
Publication year - 2014
Publication title -
nature
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 15.993
H-Index - 1226
eISSN - 1476-4687
pISSN - 0028-0836
DOI - 10.1038/nature13434
Subject(s) - carbon nanotube , materials science , chirality (physics) , chemical vapor deposition , nucleation , nanotechnology , carbon fibers , catalysis , bimetallic strip , alloy , context (archaeology) , chemical engineering , metal , composite material , metallurgy , chemistry , organic chemistry , paleontology , chiral symmetry breaking , physics , engineering , quantum mechanics , composite number , nambu–jona lasinio model , biology , quark
Carbon nanotubes have many material properties that make them attractive for applications. In the context of nanoelectronics, interest has focused on single-walled carbon nanotubes (SWNTs) because slight changes in tube diameter and wrapping angle, defined by the chirality indices (n, m), will shift their electrical conductivity from one characteristic of a metallic state to one characteristic of a semiconducting state, and will also change the bandgap. However, this structure-function relationship can be fully exploited only with structurally pure SWNTs. Solution-based separation methods yield tubes within a narrow structure range, but the ultimate goal of producing just one type of SWNT by controlling its structure during growth has proved to be a considerable challenge over the last two decades. Such efforts aim to optimize the composition or shape of the catalyst particles that are used in the chemical vapour deposition synthesis process to decompose the carbon feedstock and influence SWNT nucleation and growth. This approach resulted in the highest reported proportion, 55 per cent, of single-chirality SWNTs in an as-grown sample. Here we show that SWNTs of a single chirality, (12, 6), can be produced directly with an abundance higher than 92 per cent when using tungsten-based bimetallic alloy nanocrystals as catalysts. These, unlike other catalysts used so far, have such high melting points that they maintain their crystalline structure during the chemical vapour deposition process. This feature seems crucial because experiment and simulation both suggest that the highly selective growth of (12, 6) SWNTs is the result of a good structural match between the carbon atom arrangement around the nanotube circumference and the arrangement of the catalytically active atoms in one of the planes of the nanocrystal catalyst. We anticipate that using high-melting-point alloy nanocrystals with optimized structures as catalysts paves the way for total chirality control in SWNT growth and will thus promote the development of SWNT applications.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom