Domains of genome-wide gene expression dysregulation in Down’s syndrome
Author(s) -
Audrey Letourneau,
Federico Santoni,
Ximena Bonilla,
M. Reza Sailani,
David Herrera González,
Jop Kind,
Claire Chevalier,
Robert E. Thurman,
Richard Sandstrom,
Youssef Hibaoui,
Marco Garieri,
Konstantin Popadin,
Emilie Falconnet,
Maryline Gagnebin,
Corinne Gehrig,
Anne Vannier,
Michel Guipponi,
Laurent Farinelli,
Daniel Robyr,
Eugenia Migliavacca,
Christelle Borel,
Samuel Deutsch,
Anis Féki,
J Stamatoyannopoulos,
Yann Hérault,
Bas van Steensel,
Roderic Guigó,
Stylianos E. Antonarakis
Publication year - 2014
Publication title -
nature
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 15.993
H-Index - 1226
eISSN - 1476-4687
pISSN - 0028-0836
DOI - 10.1038/nature13200
Subject(s) - biology , transcriptome , trisomy , genetics , gene , phenotype , chromatin , genome , gene expression , aneuploidy , chromosome
Trisomy 21 is the most frequent genetic cause of cognitive impairment. To assess the perturbations of gene expression in trisomy 21, and to eliminate the noise of genomic variability, we studied the transcriptome of fetal fibroblasts from a pair of monozygotic twins discordant for trisomy 21. Here we show that the differential expression between the twins is organized in domains along all chromosomes that are either upregulated or downregulated. These gene expression dysregulation domains (GEDDs) can be defined by the expression level of their gene content, and are well conserved in induced pluripotent stem cells derived from the twins' fibroblasts. Comparison of the transcriptome of the Ts65Dn mouse model of Down's syndrome and normal littermate mouse fibroblasts also showed GEDDs along the mouse chromosomes that were syntenic in human. The GEDDs correlate with the lamina-associated (LADs) and replication domains of mammalian cells. The overall position of LADs was not altered in trisomic cells; however, the H3K4me3 profile of the trisomic fibroblasts was modified and accurately followed the GEDD pattern. These results indicate that the nuclear compartments of trisomic cells undergo modifications of the chromatin environment influencing the overall transcriptome, and that GEDDs may therefore contribute to some trisomy 21 phenotypes.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom