Structure of the LH1–RC complex from Thermochromatium tepidum at 3.0 Å
Author(s) -
Satomi Niwa,
Long Yu,
Kazuki Takeda,
Yu Hirano,
Tomoaki Kawakami,
ZhengYu WangOtomo,
Kunio Miki
Publication year - 2014
Publication title -
nature
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 15.993
H-Index - 1226
eISSN - 1476-4687
pISSN - 0028-0836
DOI - 10.1038/nature13197
Subject(s) - bacteriochlorophyll , periplasmic space , chemistry , purple bacteria , protein subunit , light harvesting complex , crystallography , photosynthetic reaction centre , ring (chemistry) , photosynthesis , biophysics , biology , biochemistry , photosystem ii , organic chemistry , escherichia coli , gene
The light-harvesting core antenna (LH1) and the reaction centre (RC) of purple photosynthetic bacteria form a supramolecular complex (LH1-RC) to use sunlight energy in a highly efficient manner. Here we report the first near-atomic structure, to our knowledge, of a LH1-RC complex, namely that of a Ca(2+)-bound complex from Thermochromatium tepidum, which reveals detailed information on the arrangement and interactions of the protein subunits and the cofactors. The RC is surrounded by 16 heterodimers of the LH1 αβ-subunit that form a completely closed structure. The Ca(2+) ions are located at the periplasmic side of LH1. Thirty-two bacteriochlorophyll and 16 spirilloxanthin molecules in the LH1 ring form an elliptical assembly. The geometries of the pigment assembly involved in the absorption characteristics of the bacteriochlorophyll in LH1 and excitation energy transfer among the pigments are reported. In addition, possible ubiquinone channels in the closed LH1 complex are proposed based on the atomic structure.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom