Species coexistence and the dynamics of phenotypic evolution in adaptive radiation
Author(s) -
Joseph A. Tobias,
Charlie K. Cornwallis,
Elizabeth P. Derryberry,
Santiago Claramunt,
Robb T. Brumfield,
Nathalie Seddon
Publication year - 2013
Publication title -
nature
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 15.993
H-Index - 1226
eISSN - 1476-4687
pISSN - 0028-0836
DOI - 10.1038/nature12874
Subject(s) - allopatric speciation , biology , sympatric speciation , adaptive radiation , sympatry , evolutionary biology , adaptation (eye) , convergent evolution , interspecific competition , character displacement , divergence (linguistics) , trait , ecology , context (archaeology) , ecological speciation , evolutionary dynamics , genetic algorithm , competition (biology) , phylogenetic tree , population , genetic variation , genetics , gene , gene flow , philosophy , linguistics , sociology , computer science , programming language , demography , paleontology , neuroscience
Interactions between species can promote evolutionary divergence of ecological traits and social signals, a process widely assumed to generate species differences in adaptive radiation. However, an alternative view is that lineages typically interact when relatively old, by which time selection for divergence is weak and potentially exceeded by convergent selection acting on traits mediating interspecific competition. Few studies have tested these contrasting predictions across large radiations, or by controlling for evolutionary time. Thus the role of species interactions in driving broad-scale patterns of trait divergence is unclear. Here we use phylogenetic estimates of divergence times to show that increased trait differences among coexisting lineages of ovenbirds (Furnariidae) are explained by their greater evolutionary age in relation to non-interacting lineages, and that--when these temporal biases are accounted for--the only significant effect of coexistence is convergence in a social signal (song). Our results conflict with the conventional view that coexistence promotes trait divergence among co-occurring organisms at macroevolutionary scales, and instead provide evidence that species interactions can drive phenotypic convergence across entire radiations, a pattern generally concealed by biases in age.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom