Ferromagnetism in suspensions of magnetic platelets in liquid crystal
Author(s) -
Alenka Mertelj,
Darja Lisjak,
Miha Drofenik,
Martin Čopič
Publication year - 2013
Publication title -
nature
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 15.993
H-Index - 1226
eISSN - 1476-4687
pISSN - 0028-0836
DOI - 10.1038/nature12863
Subject(s) - condensed matter physics , ferromagnetism , liquid crystal , magnetization , materials science , paramagnetism , magnetic domain , magnetic field , phase (matter) , physics , quantum mechanics
More than four decades ago, Brochard and de Gennes proposed that colloidal suspensions of ferromagnetic particles in nematic (directionally ordered) liquid crystals could form macroscopic ferromagnetic phases at room temperature. The experimental realization of these predicted phases has hitherto proved elusive, with such systems showing enhanced paramagnetism but no spontaneous magnetization in the absence of an external magnetic field. Here we show that nanometre-sized ferromagnetic platelets suspended in a nematic liquid crystal can order ferromagnetically on quenching from the isotropic phase. Cooling in the absence of a magnetic field produces a polydomain sample exhibiting the two opposing states of magnetization, oriented parallel to the direction of nematic ordering. Cooling in the presence of a magnetic field yields a monodomain sample; magnetization can be switched by domain wall movement on reversal of the applied magnetic field. The ferromagnetic properties of this dipolar fluid are due to the interplay of the nematic elastic interaction (which depends critically on the shape of the particles) and the magnetic dipolar interaction. This ferromagnetic phase responds to very small magnetic fields and may find use in magneto-optic devices.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom