z-logo
open-access-imgOpen Access
Coordinated control of replication and transcription by a SAPK protects genomic integrity
Author(s) -
Alba Duch,
Irene Felipe-Abrio,
Sónia Barroso,
Gilad Yaakov,
María L. García-Rubio,
Andrés Aguilera,
Eulàlia de Nadal,
Francesc Posas
Publication year - 2012
Publication title -
nature
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 15.993
H-Index - 1226
eISSN - 1476-4687
pISSN - 0028-0836
DOI - 10.1038/nature11675
Subject(s) - origin recognition complex , dna re replication , control of chromosome duplication , licensing factor , pre replication complex , microbiology and biotechnology , transcription (linguistics) , replication factor c , dna replication factor cdt1 , biology , dna replication , eukaryotic dna replication , genetics , gene , linguistics , philosophy
Upon environmental changes or extracellular signals, cells are subjected to marked changes in gene expression. Dealing with high levels of transcription during replication is critical to prevent collisions between the transcription and replication pathways and avoid recombination events. In response to osmostress, hundreds of stress-responsive genes are rapidly induced by the stress-activated protein kinase (SAPK) Hog1 (ref. 6), even during S phase. Here we show in Saccharomyces cerevisae that a single signalling molecule, Hog1, coordinates both replication and transcription upon osmostress. Hog1 interacts with and phosphorylates Mrc1, a component of the replication complex. Phosphorylation occurs at different sites to those targeted by Mec1 upon DNA damage. Mrc1 phosphorylation by Hog1 delays early and late origin firing by preventing Cdc45 loading, as well as slowing down replication-complex progression. Regulation of Mrc1 by Hog1 is completely independent of Mec1 and Rad53. Cells carrying a non-phosphorylatable allele of MRC1 (mrc1(3A)) do not delay replication upon stress and show a marked increase in transcription-associated recombination, genomic instability and Rad52 foci. In contrast, mrc1(3A) induces Rad53 and survival in the presence of hydroxyurea or methyl methanesulphonate. Therefore, Hog1 and Mrc1 define a novel S-phase checkpoint independent of the DNA-damage checkpoint that permits eukaryotic cells to prevent conflicts between DNA replication and transcription, which would otherwise lead to genomic instability when both phenomena are temporally coincident.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom