z-logo
open-access-imgOpen Access
No meridional plasma flow in the heliosheath transition region
Author(s) -
R. B. Decker,
S. M. Krimigis,
E. C. Roelof,
M. E. Hill
Publication year - 2012
Publication title -
nature
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 15.993
H-Index - 1226
eISSN - 1476-4687
pISSN - 0028-0836
DOI - 10.1038/nature11441
Subject(s) - heliosphere , physics , solar wind , plasma , energetic neutral atom , meridional flow , astrophysics , astronomy , zonal and meridional , bow shock (aerodynamics) , atmospheric sciences , shock wave , mechanics , quantum mechanics
Over a two-year period, Voyager 1 observed a gradual slowing-down of radial plasma flow in the heliosheath to near-zero velocity after April 2010 at a distance of 113.5 astronomical units from the Sun (1 astronomical unit equals 1.5 × 10(8) kilometres). Voyager 1 was then about 20 astronomical units beyond the shock that terminates the free expansion of the solar wind and was immersed in the heated non-thermal plasma region called the heliosheath. The expectation from contemporary simulations was that the heliosheath plasma would be deflected from radial flow to meridional flow (in solar heliospheric coordinates), which at Voyager 1 would lie mainly on the (locally spherical) surface called the heliopause. This surface is supposed to separate the heliosheath plasma, which is of solar origin, from the interstellar plasma, which is of local Galactic origin. In 2011, the Voyager project began occasional temporary re-orientations of the spacecraft (totalling about 10-25 hours every 2 months) to re-align the Low-Energy Charged Particle instrument on board Voyager 1 so that it could measure meridional flow. Here we report that, contrary to expectations, these observations yielded a meridional flow velocity of +3 ± 11 km s(-1), that is, one consistent with zero within statistical uncertainties.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom