z-logo
open-access-imgOpen Access
Probing molecular dynamics with attosecond resolution using correlated wave packet pairs
Author(s) -
Hiromichi Niikura,
François Légaré,
R. Hasbani,
Misha Ivanov,
D. M. Villeneuve,
P. B. Corkum
Publication year - 2003
Publication title -
nature
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 15.993
H-Index - 1226
eISSN - 1476-4687
pISSN - 0028-0836
DOI - 10.1038/nature01430
Subject(s) - attosecond , wave packet , physics , laser , ultrashort pulse , ionization , temporal resolution , femtosecond , atomic physics , optics , electron , resolution (logic) , quantum mechanics , ion , artificial intelligence , computer science
Spectroscopic measurements with increasingly higher time resolution are generally thought to require increasingly shorter laser pulses, as illustrated by the recent monitoring of the decay of core-excited krypton using attosecond photon pulses. However, an alternative approach to probing ultrafast dynamic processes might be provided by entanglement, which has improved the precision of quantum optical measurements. Here we use this approach to observe the motion of a D2+ vibrational wave packet formed during the multiphoton ionization of D2 over several femtoseconds with a precision of about 200 attoseconds and 0.05 ångströms, by exploiting the correlation between the electronic and nuclear wave packets formed during the ionization event. An intense infrared laser field drives the electron wave packet, and electron recollision probes the nuclear motion. Our results show that laser pulse duration need not limit the time resolution of a spectroscopic measurement, provided the process studied involves the formation of correlated wave packets, one of which can be controlled; spatial resolution is likewise not limited to the focal spot size or laser wavelength.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom