
Towards an ‘Oceans Systems Biology’
Author(s) -
Karsenti Eric
Publication year - 2012
Publication title -
molecular systems biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 8.523
H-Index - 148
ISSN - 1744-4292
DOI - 10.1038/msb.2012.8
Subject(s) - reductionism , systems biology , biology , ecology , epistemology , cognitive science , data science , computational biology , computer science , psychology , philosophy
Mol Syst Biol. 8: 575The twentieth century has largely been a ‘reductionist century’ in biological sciences. With the successes of physics and chemistry, molecular biology was dominated by the idea that Nature could be understood by reducing its complexity to that of molecular interactions, if not to the fundamental principles of quantum mechanics. However, complex systems, and living organisms in particular, emerge from dynamical processes occurring simultaneously at various spatio‐temporal scales. This requires a conceptual framework capable of bridging scales to explain the emergence of complexity. Although the analysis of individual interactions between a small number of molecules is useful to explain simple causal relationships, understanding what is life requires a more holistic approach. This has been progressing slowly over the past 20 years with the rise of systems biology. Operationally, systems biology is by essence interdisciplinary and aims to understand how interactions between populations of molecules, cells and organisms give rise to complex biological processes such as cell division, developmental, behavioral and ecological patterns.To apply such approaches to the study of biological systems, a series of conceptual and technological ‘toolboxes’ has been developed (Box 1). Fascinatingly, these various approaches can be applied at any organization level of living organisms, from molecular interactions to the patterning of ecosystems and evolution.### Box 1 Technological and conceptual tools in systems biologySystems biology requires methods for the acquisition and …