z-logo
open-access-imgOpen Access
Coordinated posttranscriptional mRNA population dynamics during T‐cell activation
Author(s) -
Mukherjee Neelanjan,
Lager Patrick J,
Friedersdorf Matthew B,
Thompson Marshall A,
Keene Jack D
Publication year - 2009
Publication title -
molecular systems biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 8.523
H-Index - 148
ISSN - 1744-4292
DOI - 10.1038/msb.2009.44
Subject(s) - biology , rna binding protein , ribonucleoprotein , population , microbiology and biotechnology , messenger rna , wnt signaling pathway , rna , genetics , signal transduction , gene , demography , sociology
Although RNA‐binding proteins (RBPs) coordinate many key decisions during cell growth and differentiation, the dynamics of RNA–RBP interactions have not been extensively studied on a global basis. We immunoprecipitated endogenous ribonucleoprotein complexes containing HuR and PABP throughout a T‐cell activation time course and identified the associated mRNA populations using microarrays. We used Gaussian mixture modeling as a discriminative model, treating RBP association as a discrete variable (target or not target), and as a generative model, treating RBP‐association as a continuous variable (probability of association). We report that HuR interacts with different populations of mRNAs during T‐cell activation. These populations encode functionally related proteins that are members of the Wnt pathway and proteins mediating T‐cell receptor signaling pathways. Moreover, the mRNA targets of HuR were found to overlap with the targets of other posttranscriptional regulatory factors, indicating combinatorial interdependence of posttranscriptional regulatory networks and modules after activation. Applying HuR mRNA dynamics as a quantitative phenotype in the drug‐gene‐phenotype Connectivity Map, we identified candidate small molecule effectors of HuR and T‐cell activation. We show that one of these candidates, resveratrol, exerts T‐cell activation‐dependent posttranscriptional effects that are rescued by HuR. Thus, we describe a strategy to systematically link an RBP and condition‐specific posttranscriptional effects to small molecule drugs.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here