Molecular mechanisms of insulin resistance in chronic kidney disease
Author(s) -
Sandhya S. Thomas,
Ping Zhang,
William E. Mitch
Publication year - 2015
Publication title -
kidney international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.499
H-Index - 276
eISSN - 1523-1755
pISSN - 0085-2538
DOI - 10.1038/ki.2015.305
Subject(s) - insulin resistance , insulin receptor , medicine , endocrinology , protein kinase b , insulin , insulin receptor substrate , irs1 , pi3k/akt/mtor pathway , biology , phosphorylation , signal transduction , biochemistry
Insulin resistance refers to reduced sensitivity of organs to insulin-initiated biologic processes that result in metabolic defects. Insulin resistance is common in patients with end-stage renal disease but also occurs in patients with chronic kidney disease (CKD), even when the serum creatinine is minimally increased. Following insulin binding to its receptor, auto-phosphorylation of the insulin receptor is followed by kinase reactions that phosphorylate insulin receptor substrate-1 (IRS-1), phosphatidylinositol 3-kinase (PI3K), and Akt. In fact, low levels of Akt phosphorylation (p-Akt) identify the presence of the insulin resistance that leads to metabolic defects in insulin-initiated metabolism of glucose, lipids, and muscle proteins. Besides CKD, other complex conditions (e.g., inflammation, oxidative stress, metabolic acidosis, aging, and excess angiotensin II) reduce p-Akt resulting in insulin resistance. Insulin resistance in each of these conditions is due to the activation of different E3 ubiquitin ligases, which specifically conjugate ubiquitin to IRS-1 marking it for degradation in the ubiquitin-proteasome system (UPS). Consequently, IRS-1 degradation suppresses insulin-induced intracellular signaling, causing insulin resistance. Understanding mechanisms of insulin resistance could lead to therapeutic strategies that improve the metabolism of patients with CKD.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom