Phospholipase A2 inhibits cisplatin-induced acute kidney injury by modulating regulatory T cells by the CD206 mannose receptor
Author(s) -
Hyunseong Kim,
Hyojung Lee,
Gihyun Lee,
Hyunil Jang,
Sung-Su Kim,
Heera Yoon,
GeunHyung Kang,
DaeSeok Hwang,
Sun Kwang Kim,
HwanSuck Chung,
Hyunsu Bae
Publication year - 2015
Publication title -
kidney international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.499
H-Index - 276
eISSN - 1523-1755
pISSN - 0085-2538
DOI - 10.1038/ki.2015.147
Subject(s) - acute kidney injury , mannose , pharmacology , receptor , mannose receptor , chemistry , phospholipase d , phospholipase c , cancer research , medicine , microbiology and biotechnology , signal transduction , biology , biochemistry , in vitro , macrophage
Previously, we found that Foxp3-expressing CD4(+) regulatory T (Treg) cells attenuate cisplatin-induced acute kidney injury in mice and that bee venom and its constituent phospholipase A2 (PLA2) are capable of modulating Treg cells. Here we tested whether PLA2 could inhibit cisplatin-induced acute kidney injury. As a result of treatment with PLA2, the population of Treg cells was significantly increased, both in vivo and in vitro. PLA2-injected mice showed reduced levels of serum creatinine, blood urea nitrogen, renal tissue damage, and pro-inflammatory cytokine production upon cisplatin administration. These renoprotective effects were abolished by depletion of Treg cells. Furthermore, PLA2 bound to CD206 mannose receptors on dendritic cells, essential for the PLA2-mediated protective effects on renal dysfunction. Interestingly, PLA2 treatment increased the secretion of IL-10 in the kidney from normal mice. Foxp3(+)IL-10(+) cells and CD11c(+)IL-10(+) cells were increased by PLA2 treatment. The anticancer effects of repeated administrations of a low dose of cisplatin were not affected by PLA2 treatment in a tumor-bearing model. Thus, PLA2 may prevent inflammatory responses in cisplatin-induced acute kidney injury by modulating Treg cells and IL-10 through the CD206 mannose receptor.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom