z-logo
open-access-imgOpen Access
Necroptosis and parthanatos are involved in remote lung injury after receiving ischemic renal allografts in rats
Author(s) -
Hailin Zhao,
Jiaolin Ning,
Alexandre Lemaire,
Foteini Stefania Koumpa,
James J. Sun,
Anthony Fung,
Jianteng Gu,
Bin Yi,
Kaizhi Lu,
Daqing Ma
Publication year - 2014
Publication title -
kidney international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.499
H-Index - 276
eISSN - 1523-1755
pISSN - 0085-2538
DOI - 10.1038/ki.2014.388
Subject(s) - necroptosis , lung , medicine , transplantation , kidney , necrosis , tunel assay , lung transplantation , pathology , acute kidney injury , acute tubular necrosis , apoptosis , programmed cell death , biology , immunohistochemistry , biochemistry
Early renal graft injury could result in remote pulmonary injury due to kidney-lung cross talk. Here we studied the possible role of regulated necrosis in remote lung injury in a rat allogeneic transplantation model. In vitro, human lung epithelial cell A549 was challenged with TNF-α and conditioned medium from human kidney proximal tubular cells (HK-2) after hypothermia-hypoxia insults. In vivo, the Brown-Norway rat renal grafts were extracted and stored in 4 °C Soltran preserving solution for up to 24 h and transplanted into Lewis rat recipients, and the lungs were harvested on day 1 and day 4 after grafting for further analysis. Ischemia-reperfusion injury in the renal allograft caused pulmonary injury following engraftment. PARP-1 (marker for parthanatos) and receptor interacting protein kinase 1 (Rip1) and Rip3 (markers for necroptosis) expression was significantly enhanced in the lung. TUNEL assays showed increased cell death of lung cells. This was significantly reduced after treatment with necrostatin-1 (nec-1) or/and 3-aminobenzamide (3-AB). Acute immune rejection exacerbated the remote lung injury and 3-AB or/and Nec-1 combined with cyclosporine A conferred optimal lung protection. Thus, renal graft injury triggered remote lung injury, likely through regulated necrosis. This study could provide the molecular basis for combination therapy targeting both pathways of regulated necrosis to treat such complications after renal transplantation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom