z-logo
open-access-imgOpen Access
Innate immunity pathways regulate the nephropathy gene Apolipoprotein L1
Author(s) -
Brendan Nichols,
Prachi Jog,
Jessica H. Lee,
Daniel Blackler,
Michael Wilmot,
Vivette D. D’Agati,
Glen S. Markowitz,
Jeffrey B. Kopp,
Seth L. Alper,
Martin R. Pollak,
David J. Friedman
Publication year - 2014
Publication title -
kidney international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.499
H-Index - 276
eISSN - 1523-1755
pISSN - 0085-2538
DOI - 10.1038/ki.2014.270
Subject(s) - innate immune system , immunity , gene , nephropathy , immunology , medicine , biology , genetics , immune system , endocrinology , diabetes mellitus
Apolipoprotein L1 (APOL1) risk variants greatly elevate the risk of kidney disease in African Americans. Here we report a cohort of patients who developed collapsing focal segmental glomerulosclerosis while receiving therapeutic interferon, all of whom carried the APOL1 high-risk genotype. This finding raised the possibility that interferons and the molecular pattern recognition receptors that stimulate interferon production may contribute to APOL1-associated kidney disease. In cell culture, interferons and Toll-like receptor (TLR) agonists increased APOL1 expression by up to 200-fold, in some cases with the appearance of transcripts not detected under basal conditions. PolyI:C, a double-stranded RNA TLR3 agonist, increased APOL1 expression by upregulating interferons directly or through an interferon-independent, IFN-regulatory factor 3 (IRF3)-dependent pathway. Using pharmacological inhibitors, small hairpin RNA knockdown, and chromatin immunoprecipitation, we found that the interferon-independent TLR3 pathway relied on signaling through TBK1, NF-κB, and Jak kinases, and on binding of IRF1, IRF2, and STAT2 at the APOL1 transcription start site. We also demonstrate that overexpression of the APOL1 risk variants is more injurious to cells than overexpression of the wild-type APOL1 protein. Our study illustrates that antiviral pathways may be important inducers of kidney disease in individuals with the APOL1 high-risk genotype and identifies potential targets for prevention or treatment.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom