Uromodulin upregulates TRPV5 by impairing caveolin-mediated endocytosis
Author(s) -
Matthias T. F. Wolf,
XueRu Wu,
Chou-Long Huang
Publication year - 2013
Publication title -
kidney international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.499
H-Index - 276
eISSN - 1523-1755
pISSN - 0085-2538
DOI - 10.1038/ki.2013.63
Subject(s) - endocytosis , tamm–horsfall protein , caveolin 1 , microbiology and biotechnology , chemistry , biology , receptor , medicine , endocrinology , kidney
Uromodulin (UMOD) is synthesized in the thick ascending limb and secreted into urine as the most abundant protein. Association studies in humans suggest protective effects of UMOD against calcium-containing kidney stones. Mice carrying mutations of Umod found in human UMOD-associated kidney disease (UAKD) and Umod-deficient mice exhibit hypercalciuria. The mechanism for UMOD regulation of urinary Ca(2+) excretion is incompletely understood. We examined if UMOD regulates TRPV5 and TRPV6, channels critical for renal transcellular Ca(2+) reabsorption. Coexpression with UMOD increased whole-cell TRPV5 current density in HEK293 cells. In biotinylation studies, UMOD increased TRPV5 cell-surface abundance. Extracellular application of purified UMOD upregulated TRPV5 current density within physiological relevant concentration ranges. UMOD exerted a similar effect on TRPV6. TRPV5 undergoes constitutive caveolin-mediated endocytosis. UMOD had no effect on TRPV5 in a caveolin-1-deficient cell line. Expression of recombinant caveolin-1 in these cells restored the ability of UMOD to upregulate TRPV5. Secretion of UAKD-mutant UMOD was markedly reduced and coexpression of mutant UMOD with TRPV5 failed to increase its current. Immunofluorescent studies demonstrated lower TRPV5 expression in Umod(-/-) mice compared with wild-type. UMOD upregulates TRPV5 by acting from extracellular and by decreasing endocytosis of TRPV5. The stimulation of Ca(2+) reabsorption via TRPV5 by UMOD may contribute to protection against kidney-stone formation.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom