z-logo
open-access-imgOpen Access
Crk1/2 and CrkL form a hetero-oligomer and functionally complement each other during podocyte morphogenesis
Author(s) -
Britta George,
Qingfeng Fan,
C. P. Dlugos,
Abdulsalam A. Soofi,
Jidong Zhang,
Rakesh Kumar Verma,
TaeJu Park,
Hetty N. Wong,
Tom Curran,
Deepak Nihalani,
Lawrence B. Holzman
Publication year - 2014
Publication title -
kidney international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.499
H-Index - 276
eISSN - 1523-1755
pISSN - 0085-2538
DOI - 10.1038/ki.2013.556
Subject(s) - podocyte , microbiology and biotechnology , nephrin , podocalyxin , slit diaphragm , chemistry , cancer research , biology , endocrinology , proteinuria , kidney
Activation of the slit diaphragm protein nephrin induces actin cytoskeletal remodeling, resulting in lamellipodia formation in podocytes in vitro in a phosphatidylinositol-3 kinase-, focal adhesion kinase-, Cas-, and Crk1/2-dependent fashion. In mice, podocyte-specific deletion of Crk1/2 prevents or attenuates foot process effacement in two models of podocyte injury. This suggests that cellular mechanisms governing lamellipodial protrusion in vitro are similar to those in vivo during foot process effacement. As Crk1/2-null mice developed and aged normally, we tested whether the Crk1/2 paralog, CrkL, functionally complements Crk1/2 in a podocyte-specific context. Podocyte-specific CrkL-null mice, like podocyte-specific Crk1/2-null mice, developed and aged normally but were protected from protamine sulfate-induced foot process effacement. Simultaneous podocyte-specific deletion of Crk1/2 and CrkL resulted in albuminuria detected by 6 weeks postpartum and associated with altered podocyte process architecture. Nephrin-induced lamellipodia formation in podocytes in vitro was CrkL-dependent. CrkL formed a hetero-oligomer with Crk2 and, like Crk2, was recruited to tyrosine phosphorylated nephrin. Thus, Crk1/2 and CrkL are physically linked, functionally complement each other during podocyte foot process spreading, and together are required for developing typical foot process architecture.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom