z-logo
open-access-imgOpen Access
Transforming growth factor-β1-mediated renal fibrosis is dependent on the regulation of transforming growth factor receptor 1 expression by let-7b
Author(s) -
Bo Wang,
Jay C. Jha,
Shinji Hagiwara,
Aaron McClelland,
Karin JandeleitDahm,
Merlin C. Thomas,
Mark E. Cooper,
Phillip Kantharidis
Publication year - 2013
Publication title -
kidney international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.499
H-Index - 276
eISSN - 1523-1755
pISSN - 0085-2538
DOI - 10.1038/ki.2013.372
Subject(s) - transforming growth factor , growth factor , fibrosis , medicine , cancer research , receptor , endocrinology , microbiology and biotechnology , biology
Renal fibrosis results from excessive accumulation of extracellular matrix mainly driven by transforming growth factor-β1 (TGF-β1). Certain microRNAs have been implicated in this disease, and here we examine the role of let-7b. Rat proximal tubular epithelial cells (NRK52E) were treated with TGF-β1 for 3 days to assess the expression of markers of fibrosis and let-7b. These factors were also assessed in two mouse models representing early and more advanced diabetic nephropathy and in the non-diabetic adenine-induced renal fibrosis model. TGF-β1 downregulated the expression of let-7b and induced fibrogenesis in NRK52E cells. Ectopic expression of let-7b repressed TGF-β1 receptor 1 (TGFBR1) expression directly by targeting the two let-7b binding sites in the 3'-untranslated region of that gene, reduced expression of extracellular matrix proteins, decreased SMAD3 activity, and attenuated the profibrotic effects of TGF-β1. Knockdown of let-7b elevated TGFBR1 expression and mimicked some of the profibrotic effects of TGF-β1. Consistent with these observations, let-7b expression was also reduced in models of both diabetic and non-diabetic renal fibrosis with the upregulation of TGFBR1. Thus, let-7b microRNA represents a potential new target for the treatment of renal fibrosis in diabetic and non-diabetic nephropathy.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom