z-logo
open-access-imgOpen Access
The urine microRNA profile may help monitor post-transplant renal graft function
Author(s) -
Daniel G. Maluf,
Catherine I. Dumur,
Jihee L. Suh,
Mariano J. Scian,
Anne L. King,
Helen P. Cathro,
Jae K. Lee,
Ricardo C. Gehrau,
Kenneth L. Brayman,
Lorenzo Gallon,
Valeria R. Mas
Publication year - 2013
Publication title -
kidney international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.499
H-Index - 276
eISSN - 1523-1755
pISSN - 0085-2538
DOI - 10.1038/ki.2013.338
Subject(s) - renal transplant , renal function , urology , microrna , urine , medicine , function (biology) , transplantation , chemistry , biology , biochemistry , microbiology and biotechnology , gene
Noninvasive, cost-effective biomarkers that allow accurate monitoring of graft function are needed in kidney transplantation. Since microRNAs (miRNAs) have emerged as promising disease biomarkers, we sought to establish an miRNA signature in urinary cell pellets comparing kidney transplant patients diagnosed with chronic allograft dysfunction (CAD) with interstitial fibrosis and tubular atrophy and those recipients with normal graft function. Overall, we evaluated 191 samples from 125 deceased donor primary kidney transplant recipients in the discovery, initial validation, and the longitudinal validation studies for noninvasive monitoring of graft function. Of 1733 mature miRNAs studied using microarrays, 22 were found to be differentially expressed between groups. Ontology and pathway analyses showed inflammation as the principal biological function associated with these miRNAs. Twelve selected miRNAs were longitudinally evaluated in urine samples of an independent set of 66 patients, at two time points after kidney transplant. A subset of these miRNAs was found to be differentially expressed between groups early after kidney transplant before histological allograft injury was evident. Thus, a panel of urine miRNAs was identified as potential biomarkers for monitoring graft function and anticipating progression to CAD in kidney transplant patients.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom