Subcutaneous interstitial pressure and volume characteristics in renal impairment associated with edema
Author(s) -
Leonard Ebah,
Helge Wiig,
Idalia Dawidowska,
Charlotte O'Toole,
Angela Summers,
Milind Nikam,
Anuradha Jayanti,
Beatrice Coupes,
Paul Brenchley,
Sandip Mitra
Publication year - 2013
Publication title -
kidney international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.499
H-Index - 276
eISSN - 1523-1755
pISSN - 0085-2538
DOI - 10.1038/ki.2013.208
Subject(s) - medicine , edema , pathology , cardiology
The kidneys and the interstitial compartment play a vital role in body fluid regulation. The latter may be significantly altered in renal dysfunction, but experimental studies are lacking. To help define this we measured the subcutaneous interstitial pressure, bioimpedance volumes, and edema characteristics in 10 healthy subjects and 21 patients with obvious edema and chronic kidney disease (CKD). Interstitial edema was quantified by the time taken for a medial malleolar thumb pit to refill and termed the edema refill time. Interstitial pressure was significantly raised in CKD compared to healthy subjects. Total body water (TBW), extracellular fluid volume (ECFV), interstitial fluid volume, the ratio of the ECFV to the TBW, and segmental extracellular fluid volume were raised in CKD. The ratio of the ECFV to the TBW and the interstitial fluid volume were the best predictors of interstitial pressure. Significantly higher interstitial pressures were noted in edema of 2 weeks or less duration. A significant nonlinear relationship defined interstitial pressure and interstitial fluid volume. Edema refill time was significantly inversely related to interstitial pressure, interstitial compartment volumes, and edema vintage. Elevated interstitial pressure in CKD with obvious edema is a combined function of accumulated interstitial compartment fluid volumes, edema vintage, and tissue mechanical properties. The edema refill time may represent an important parameter in the clinical assessment of edema, providing additional information about interstitial pathophysiology in patients with CKD and fluid retention.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom