z-logo
open-access-imgOpen Access
Determinants of phosphorus mobilization during hemodialysis
Author(s) -
John K. Leypoldt,
Baris U. Agar,
Alp Akonur,
Audrey M. Hutchcraft,
Kenneth Story,
Bruce F. Culleton
Publication year - 2013
Publication title -
kidney international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.499
H-Index - 276
eISSN - 1523-1755
pISSN - 0085-2538
DOI - 10.1038/ki.2013.205
Subject(s) - phosphorus , hemodialysis , mobilization , extracellular fluid , chemistry , zoology , volume (thermodynamics) , medicine , extracellular , biochemistry , biology , physics , organic chemistry , archaeology , quantum mechanics , history
Our recent work proposed a pseudo one-compartment model for describing intradialysis and postdialysis rebound kinetics of phosphorus. In this model, phosphorus is removed directly from a central distribution volume with the rate of phosphorus mobilization from a second, very large compartment proportional to the phosphorus mobilization clearance. Here, we evaluated factors of phosphorus mobilization clearance and postdialysis central distribution volume from 774 patients in the HEMO Study. Phosphorus mobilization clearance and postdialysis central distribution volume were 87 (65, 116) ml/min, median (interquartile range), and 9.4 (7.2, 12.0) liter, respectively. The phosphorus mobilization clearance was significantly higher for male patients than for female patients. Both the phosphorus mobilization clearance and the postdialysis central distribution volume were significantly associated with postdialysis body weight but negatively with the predialysis serum phosphorus concentration. The postdialysis central distribution volume was also significantly associated with age. Overall, the postdialysis central distribution volume was 13.6% of the postdialysis body weight. Thus, the phosphorus mobilization clearance during hemodialysis is higher when predialysis serum phosphorus concentration is low and higher in male patients than in female patients. The central distribution volume of phosphorus is a space approximating the extracellular fluid volume.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom