z-logo
open-access-imgOpen Access
Targeting of sodium–glucose cotransporters with phlorizin inhibits polycystic kidney disease progression in Han:SPRD rats
Author(s) -
Xueqi Wang,
Suhua Zhang,
Yang Liu,
Daniela Egli-Spichtig,
Sarika Kapoor,
Hermann Koepsell,
Nilufar Mohebbi,
Stephan Segerer,
Andreas L. Serra,
Daniel Rodríguez,
Olivier Devuyst,
Changlin Mei,
Rudolf P. Wüthrich
Publication year - 2013
Publication title -
kidney international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.499
H-Index - 276
eISSN - 1523-1755
pISSN - 0085-2538
DOI - 10.1038/ki.2013.199
Subject(s) - phlorizin , polycystic kidney disease , cotransporter , endocrinology , medicine , kidney disease , sodium , transporter , kidney , glucose transporter , chemistry , biochemistry , insulin , organic chemistry , gene
Renal tubular epithelial cell proliferation and transepithelial cyst fluid secretion are key features in the progression of polycystic kidney disease (PKD). As the role of the apical renal sodium-glucose cotransporters in these processes is not known, we tested whether phlorizin inhibits cyst growth and delays renal disease progression in a rat model of PKD. Glycosuria was induced by subcutaneous injection of phlorizin in male heterozygous (Cy/+) and wild-type Han:SPRD rats. Phlorizin induced immediate and sustained glycosuria and osmotic diuresis in these rats. Cy/+ rats treated with phlorizin for 5 weeks showed a significant increase in creatinine clearance, a lower 2-kidneys/body weight ratio, a lower renal cyst index, and reduced urinary albumin excretion as compared with vehicle-treated Cy/+ rats. Measurement of Ki67 staining found significantly lower cell proliferation in dilated tubules and cysts of Cy/+ rats treated with phlorizin, as well as a marked inhibition of the activated MAP kinase pathway. In contrast, the mTOR pathway remained unaltered. Phlorizin dose dependently inhibited MAP kinase in cultured tubular epithelial cells from Cy/+ rats. Thus, long-term treatment with phlorizin significantly inhibits cystic disease progression in a rat model of PKD. Hence, induction of glycosuria and osmotic diuresis (glycuresis) by renal sodium-glucose cotransporters inhibition could have a therapeutic effect in polycystic kidney disease.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom