z-logo
open-access-imgOpen Access
A meta-analysis of expression signatures in glomerular disease
Author(s) -
Sam Tryggvason,
Jing Guo,
Masatoshi Nukui,
Jenny Norlin,
Börje Haraldsson,
Hans Jörnvall,
Karl Tryggvason,
Liqun He
Publication year - 2013
Publication title -
kidney international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.499
H-Index - 276
eISSN - 1523-1755
pISSN - 0085-2538
DOI - 10.1038/ki.2013.169
Subject(s) - disease , transcriptome , proteome , biology , gene expression profiling , kidney disease , computational biology , proteomics , bioinformatics , pathology , medicine , gene expression , gene , genetics , endocrinology
Glomerular diseases represent major diagnostic and therapeutic challenges with classification of these diseases largely relying on clinical and histological findings. Elucidation of molecular mechanisms of progressive glomerular disease could facilitate quicker development. High-throughput expression profiling reveals all genes and proteins expressed in tissue and cell samples. These methods are very appropriate for glomerular disease as pure glomeruli can be obtained from kidney biopsies. To date, proteome profiling data are only available for normal glomeruli, but more robust transcriptome methods have been applied to many mouse model and a few human glomerular diseases. Here, we have carried out a meta-analysis of currently available glomerular expression data in normal and diseased glomeruli from mice, rats, and humans using a standardized protocol. The results suggest a potential for glomerular transcriptomics in identifying pathogenic pathways, disease monitoring, and the feasibility to use animal models to study human glomerular disease. We also found that currently there are no specific consensus biomarkers or pathways among different disease data sets, indicating there are likely disease-specific mechanisms and expression profiles. Thus, further transcriptomics and proteomics analysis, especially that of dynamic changes in the diseases, may lead to novel diagnostics tools and specific pharmacologic therapies.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom