Plasma FGF23 levels increase rapidly after acute kidney injury
Author(s) -
Marta Christov,
Sushrut S. Waikar,
Renata Péreira,
Andrea Havasi,
David E. Leaf,
David Goltzman,
Paola Divieti Pajevic,
Myles Wolf,
Harald Jüppner
Publication year - 2013
Publication title -
kidney international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.499
H-Index - 276
eISSN - 1523-1755
pISSN - 0085-2538
DOI - 10.1038/ki.2013.150
Subject(s) - fibroblast growth factor 23 , medicine , endocrinology , parathyroid hormone , acute kidney injury , vitamin d and neurology , hormone , kidney , calcium
Emerging evidence suggests that fibroblast growth factor 23 (FGF23) levels are elevated in patients with acute kidney injury (AKI). In order to determine how early this increase occurs, we used a murine folic acid-induced nephropathy model and found that plasma FGF23 levels increased significantly from baseline already after 1 h of AKI, with an 18-fold increase at 24 h. Similar elevations of FGF23 levels were found when AKI was induced in mice with osteocyte-specific parathyroid hormone receptor ablation or the global deletion of parathyroid hormone or the vitamin D receptor, indicating that the increase in FGF23 was independent of parathyroid hormone and vitamin D signaling. Furthermore, FGF23 levels increased to a similar extent in wild-type mice maintained on normal or phosphate-depleted diets prior to induction of AKI, indicating that the marked FGF23 elevation is at least partially independent of dietary phosphate. Bone production of FGF23 was significantly increased in AKI. The half-life of intravenously administered recombinant FGF23 was only modestly increased. Consistent with the mouse data, plasma FGF23 levels rose 15.9-fold by 24 h following cardiac surgery in patients who developed AKI. The levels were significantly higher than in those without postoperative AKI. Thus, circulating FGF23 levels rise rapidly during AKI in rodents and humans. In mice, this increase is independent of established modulators of FGF23 secretion.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom