z-logo
open-access-imgOpen Access
The TLR4 antagonist CRX-526 protects against advanced diabetic nephropathy
Author(s) -
Miao Lin,
Wai Han Yiu,
Rui Xi Li,
Hao Wu,
Dickson W.L. Wong,
Loretta Y.Y. Chan,
Joseph C.K. Leung,
Kar Neng Lai,
Sydney C.W. Tang
Publication year - 2013
Publication title -
kidney international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.499
H-Index - 276
eISSN - 1523-1755
pISSN - 0085-2538
DOI - 10.1038/ki.2013.11
Subject(s) - diabetic nephropathy , osteopontin , endocrinology , medicine , tlr4 , enos , albuminuria , downregulation and upregulation , nitric oxide synthase , nitric oxide , chemistry , receptor , kidney , biochemistry , gene
We recently showed that Toll-like receptor (TLR) TLR4 was overexpressed in the human diabetic kidney, which could promote tubular inflammation. Here we explored whether the TLR4 antagonist, CRX-526, has therapeutic potential to attenuate renal injuries and slow the progression of advanced diabetic nephropathy in wild-type and endothelial nitric oxide synthase (eNOS) knockout mice. In the latter, the endogenous TLR4 ligand, high-mobility group box 1, was upregulated more than in wild-type animals. Four weeks after streptozotocin induction of diabetes, mice were injected with either CRX-526 or vehicle for 8 weeks. CRX-526 significantly reduced albuminuria and blood urea nitrogen without altering blood glucose and systolic blood pressure in diabetic mice. Glomerular hypertrophy, glomerulosclerosis, and tubulointerstitial injury were attenuated by CRX-526, which was associated with decreased chemokine (C-C motif) ligand (CCL)-2, osteopontin, CCL-5 overexpression, subsequent macrophage infiltration, and collagen deposition. These effects were associated with inhibition of TGF-β overexpression and NF-κB activation. In vitro, CRX-526 inhibited high glucose-induced osteopontin upregulation and NF-κB nuclear translocation in cultured human proximal tubular epithelial cells. Thus, we provided evidence that inhibition of TLR4 with the synthetic antagonist CRX-526 conferred renoprotective effects in eNOS knockout diabetic mice with advanced diabetic nephropathy.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom