z-logo
open-access-imgOpen Access
Calcium-sensing receptor, calcimimetics, and cardiovascular calcifications in chronic kidney disease
Author(s) -
Pablo A. Ureña Torres,
Marc De Broe
Publication year - 2012
Publication title -
kidney international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.499
H-Index - 276
eISSN - 1523-1755
pISSN - 0085-2538
DOI - 10.1038/ki.2012.69
Subject(s) - secondary hyperparathyroidism , endocrinology , calcimimetic , medicine , parathyroid hormone , cinacalcet , kidney disease , calcium sensing receptor , hyperparathyroidism , calcitriol receptor , calcium metabolism , calcium , vitamin d and neurology
Renal function impairment goes along with a disturbed calcium, phosphate, and vitamin D metabolism, resulting in secondary hyperparathyroidism (sHPT). These mineral metabolism disturbances are associated with soft tissue calcifications, particularly arteries, cardiac valves, and myocardium, ultimately associated with increased risk of mortality in patients with chronic kidney disease (CKD). sHPT may lead to cardiovascular calcifications by other mechanisms including an impaired effect of parathyroid hormone (PTH), and a decreased calcium-sensing receptor (CaR) expression on cardiovascular structures. PTH may play a direct role on vascular calcifications through activation of a receptor, the type-1 PTH/PTHrP receptor, normally attributed to PTH-related peptide (PTHrP). The CaR in vascular cells may also play a role on vascular mineralization as suggested by its extremely reduced expression in atherosclerotic calcified human arteries. Calcimimetic compounds increasing the CaR sensitivity to extracellular calcium efficiently reduce serum PTH, calcium, and phosphate in dialysis patients with sHPT. They upregulate the CaR in vascular cells and attenuate vascular mineralization in uremic states. In this article, the pathophysiological mechanisms associated with cardiovascular calcifications in case of sHPT, the impact of medical and surgical correction of sHPT, the biology of the CaR in vascular structures and its function in CKD state, and finally the role played by the CaR and its modulation by the calcimimetics on uremic-related cardiovascular calcifications are reviewed.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom