Chromosome substitution modulates resistance to ischemia reperfusion injury in Brown Norway rats
Author(s) -
David P. Basile,
Melinda R. Dwinell,
Shur-Jen Wang,
Brian D. Shames,
Deborah Donohoe,
Shaoying Chen,
Rajasree Sreedharan,
Scott K. Van Why
Publication year - 2012
Publication title -
kidney international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.499
H-Index - 276
eISSN - 1523-1755
pISSN - 0085-2538
DOI - 10.1038/ki.2012.391
Subject(s) - acute kidney injury , allele , creatinine , ischemia , in silico , gene , biology , quantitative trait locus , genetics , medicine , endocrinology
Brown Norway rats (BN, BN/NHsdMcwi) are profoundly resistant to developing acute kidney injury (AKI) following ischemia reperfusion. To help define the genetic basis for this resistance, we used consomic rats, in which individual chromosomes from BN rats were placed into the genetic background of Dahl SS rats (SS, SS/JrHsdMcwi) to determine which chromosomes contain alleles contributing to protection from AKI. The parental strains had dramatically different sensitivity to ischemia reperfusion with plasma creatinine levels following 45 min of ischemia and 24 h reperfusion of 4.1 and 1.3 mg/dl in SS and BN, respectively. No consomic strain showed protection similar to the parental BN strain. Nine consomic strains (SS-7(BN), SS-X(BN), SS-8(BN), SS-4(BN), SS-15(BN), SS-3(BN), SS-10(BN), SS-6(BN), and SS-5(BN)) showed partial protection (plasma creatinine about 2.5-3.0 mg/dl), suggesting that multiple alleles contribute to the severity of AKI. In silico analysis was performed using disease ontology database terms and renal function quantitative trait loci from the Rat Genome Database on the BN chromosomes giving partial protection from AKI. This tactic identified at least 36 candidate genes, with several previously linked to the pathophysiology of AKI. Thus, natural variants of these alleles or yet-to-be identified alleles on these chromosomes provide protection against AKI. These alleles may be potential modulators of AKI in susceptible patient populations.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom