Paricalcitol does not improve glucose metabolism in patients with stage 3–4 chronic kidney disease
Author(s) -
Ian H. de Boer,
Michael C. Sachs,
Andrew N. Hoofnagle,
Kristina M. Utzschneider,
Steven E. Kahn,
Bryan Kestenbaum,
Jonathan Himmelfarb
Publication year - 2012
Publication title -
kidney international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.499
H-Index - 276
eISSN - 1523-1755
pISSN - 0085-2538
DOI - 10.1038/ki.2012.311
Subject(s) - medicine , paricalcitol , endocrinology , kidney disease , calcitriol , diabetes mellitus , parathyroid hormone , renal function , vitamin d and neurology , secondary hyperparathyroidism , calcium
Patients with chronic kidney disease are often insulin resistant and glucose intolerant--abnormalities that promote cardiovascular disease. Administration of 1,25-dihydroxyvitamin D (calcitriol) has improved glucose metabolism in patients with end-stage renal disease. We conducted a randomized, placebo-controlled clinical trial to test whether paricalcitol, a 1,25-dihydroxyvitamin D analog, changes glucose tolerance in earlier stages of chronic kidney disease. In a crossover design, 22 nondiabetic patients with estimated glomerular filtration rates of stage 3-4 chronic kidney disease and fasting plasma glucose of 100-125 mg/dl were given daily oral paricalcitol for 8 weeks and matching placebo for 8 weeks, separated by an 8-week washout period. The order of interventions was random and blinded to both participants and investigators. Paricalcitol significantly reduced serum concentrations of parathyroid hormone, 1,25-dihydroxyvitamin D, and 25-hydroxyvitamin D while significantly increasing serum concentrations of fibroblast growth factor-23 and 24,25-dihydroxyvitamin D. Paricalcitol, however, had no significant effect on glucose tolerance (the primary outcome measure), insulin sensitivity, beta-cell insulin response, plasma free fatty acid suppression, or urinary F2-isoprostane excretion. Thus, despite substantial effects on vitamin D metabolism, paricalcitol did not improve glucose metabolism in nondiabetic patients with stage 3-4 chronic kidney disease.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom