z-logo
open-access-imgOpen Access
The association of genetic variants of type 2 diabetes with kidney function
Author(s) -
Nora Franceschini,
Nawar Shara,
Hong Wang,
V. Saroja Voruganti,
Sandy Laston,
Karin Haack,
Elisa T. Lee,
Lyle G. Best,
Jean W. MacCluer,
Barbara Cochran,
Thomas D. Dyer,
Barbara V. Howard,
Shelley A. Cole,
Kari E. North,
Jason G. Umans
Publication year - 2012
Publication title -
kidney international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.499
H-Index - 276
eISSN - 1523-1755
pISSN - 0085-2538
DOI - 10.1038/ki.2012.107
Subject(s) - type 2 diabetes , renal function , medicine , association (psychology) , diabetes mellitus , genetics , biology , endocrinology , psychology , psychotherapist
Type 2 diabetes is highly prevalent and is the major cause of progressive chronic kidney disease in American Indians. Genome-wide association studies identified several loci associated with diabetes but their impact on susceptibility to diabetic complications is unknown. We studied the association of 18 type 2 diabetes genome-wide association single-nucleotide polymorphisms (SNPs) with estimated glomerular filtration rate (eGFR; MDRD equation) and urine albumin-to-creatinine ratio in 6958 Strong Heart Study family and cohort participants. Center-specific residuals of eGFR and log urine albumin-to-creatinine ratio, obtained from linear regression models adjusted for age, sex, and body mass index, were regressed onto SNP dosage using variance component models in family data and linear regression in unrelated individuals. Estimates were then combined across centers. Four diabetic loci were associated with eGFR and one locus with urine albumin-to-creatinine ratio. A SNP in the WFS1 gene (rs10010131) was associated with higher eGFR in younger individuals and with increased albuminuria. SNPs in the FTO, KCNJ11, and TCF7L2 genes were associated with lower eGFR, but not albuminuria, and were not significant in prospective analyses. Our findings suggest a shared genetic risk for type 2 diabetes and its kidney complications, and a potential role for WFS1 in early-onset diabetic nephropathy in American Indian populations.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom